INTERNATIONAL SILAGE CONSULTANCY

Effects of maturity on yield, nutritive value and fermentability of whole-crop white lupins

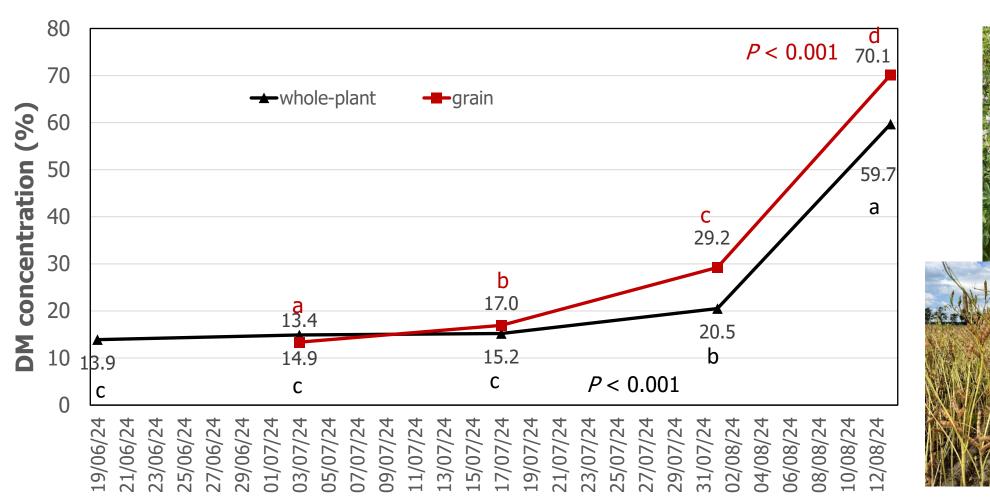
- H. Auerbach, International Silage Consultancy, Germany
- W. Richardt, LKS mbH, Lichtenwalde, Germany

INTERNATIONAL SILAGE CONSULTANCY

- silages from home-grown legumes with (ever) increasing importance to meet the dietary protein demands of ruminants to diversify crop rotations to get access to (more) EU subsidies
- lucerne/clover grown alone of in combination with grasses most important legumes in temperate climates, but

land fixed over several years (3-4 years) rather high weather dependency due to necessity to wilt rather high costs due to needed technologoical actions, e.g. tedding/raking/swathing

Determination of feed value of whole-plant white lupin during the course of vegetation (and in silages produced therefrom)

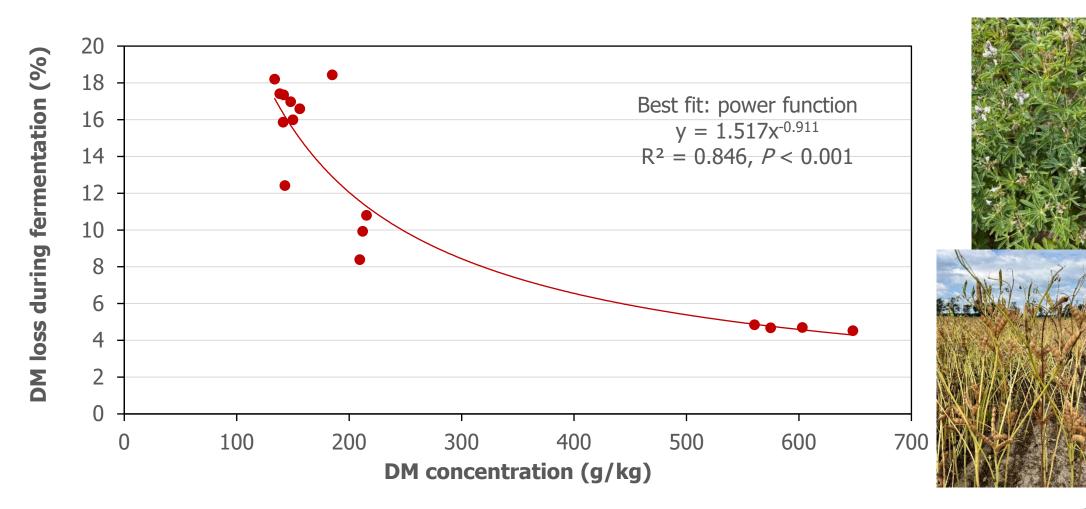

Material and Methods (I)

- white lupin (variety *Celina*) planted on March 25, 2024 at 292 kg/ha in Etingen, Saxony-Anhalt, Germany
- > manual harvest of the forage at 10 cm cutting height, starting on June 19, 2024, at bi-weekly intervals
- ➤ 4 random sampling locations in the field selected; material from 2-4 m² harvested to determine yield per harvest
- ➤ after transport to Anhalt University, material chopped by stationary chopper to 30 mm theoretical length of cut (followed by processing through a garden shredder for the last two harvests)
- ➤ one silo packed with material from each of the sampling locations (4 reps/harvest), stored for 111-132 days at 20-22 °C

- ➤ all analyses done by wet chemistry according to official methods of the German Feed Evaluation System (VDLUFA; GfE, 2023)
- > DM losses during fermentation calculated according to Weissbach (2005)
- > statistical analysis by SAS 9.4, GLM proc as completely randomized block design; REG used to describe relationship between DM concentration and DM losses during fermentation
- \triangleright differences among LSmeans separated by Tukey test, significance declared at P < 0.05

Development of certain lupin traits over time

ISC


Trait	Harvest					SEM	Р
	1	2	3	4	5	<u>-</u>	
Crude ash (g/kg DM)	61 ^a	48 ^b	45 ^c	46 ^c	49 ^b	0.4	<0.001
Crude protein (g/kg DM)	162 ^b	154 ^b	154 ^b	161 ^b	198a	5.9	< 0.01
Water-soluble carbo- hydrates (g/kg DM)	112 ^c	198ª	158 ^b	79 ^d	51 ^e	3.8	<0.001
Starch (g/kg DM)	100 ^e	103 ^d	189 ^c	192 ^b	203 ^a	0.4	< 0.001
Fermentability coefficient OMD (%) GE ⁵ (MJ/kg DM)	34 ^c 64.0 ^c 19.6 ^b	61 ^b 67.6 ^b 19.2 ^c	58 ^b 67.0 ^b 19.2 ^c	35 ^c 66.0 ^b 19.8 ^b	67ª 70.5ª 20.4ª	1.0 0.41 0.05	<0.001 <0.001 <0.001
ME ⁶ (MJ/kg DM)	9.8c	10.2 ^b	10.1 ^{bc}	10.3 ^b	11.3ª	0.09	< 0.001
Yield							
DM (t/ha) Crude protein (t/ha)	6.91 ^c 1.11 ^c	6.36 ^c 0.98 ^c	12.42 ^a 1.91 ^a	9.22 ^b 1.48 ^b	12.11 ^a 2.38 ^a	0.47 0.07	<0.001 <0.001
ME ⁶ (GJ/ha)	67.53 ^c	64.85 ^c	125.25a	94.33 ^b	137.26a	4.62	< 0.001

Relationship between DM at ensiling and DM loss during fermentation

Summary and conclusions

- 1. Lupins undergo significant changes in chemical composition during the vegetation period.
- 2. High DM yields seem to be attainable with one cut (direct-cut), which are comparable to grass/lucerne in a multi-cut (3-4) system, but at lower technological costs.
- 3. Sufficiently high DM of the direct-cut forage needs to be attained (min. 30%) in order to avoid nutrient/energy losses by effluent production.
- 4. Harvest window seems to be rather narrow due to rapid maturation especially under hot and dry conditions.
- 5. More studies needed to enable comprehensive evaluation of the potential of whole-crop lupins as forage for silage production.
- 6. Feeding studies with dairy cows to be conducted to study the effect of lupin silage (replacing lucerne/clover/grass silage) on feed intake and milk yields.

Thank you very much for your attention!

